幂级数展开式对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。
幂级数是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
幂级数展开式对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。
幂级数是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。