开口向上的曲线,称为上凹,或称为下凸,形状为∪。开口向下的曲线,称为下凹,或称为上凸,形状为∩。
从切线角度讲,下凸弧上过任一点的切线都在曲线弧之下,而上凸弧上过任一点的切线都在曲线弧之上。
从割线角度讲,如果连续曲线y=f(x)在区间(a,b)对应的曲线弧上任意两点的割线线段都在该两点间的曲线弧之上,则称该段曲线弧是下凸的,并称函数y=f(x)在区间(a,b)上是下凸的或上凹的,即曲线开口向上。反之,则是上凸的。
从导数角度讲,设y=f(x)在(a,b)内具有二阶导数,如果在(a,b)内f““(x)>o,则y=f(x)在(a,b)内为下凸;如果在(a,b)内f““(x)