矩阵等价的充要条件

编辑:全民百科 时间:2024-02-21 06:54:38

矩阵等价的定义:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。

矩阵等价的充要条件

是同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相等,列向量,行向量极大线性无关组数相等。

等价矩阵的性质

1. 矩阵A和A等价(反身性)。

2. 矩阵A和B等价,那么B和A也等价(等价性)。

3. 矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。

4. 矩阵A和B等价,那么IAI=KIBI。(K为非零常数)

5. 具有行等价关系的矩阵所对应的线性方程组有相同的解

6. 对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。