1. 物理——合振动运动方程求解
两个同方向,同周期的简谐运动方程为x1=4cos(3πt+π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2. x=x1+x2=Acos(3πt+φ)
A=√4^2+3^2+2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3)+3sin(-π/6)]/[4cos(π/3)+3cos(-π/6)]
φ=23°
x=5cos(3πt+23°)。
1. 物理——合振动运动方程求解
两个同方向,同周期的简谐运动方程为x1=4cos(3πt+π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2. x=x1+x2=Acos(3πt+φ)
A=√4^2+3^2+2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3)+3sin(-π/6)]/[4cos(π/3)+3cos(-π/6)]
φ=23°
x=5cos(3πt+23°)。