相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
1. 正相关是指两个变量变动方向相同,一个变量由大到小或由小到大变化时,另一个变量亦由大到小或由小到大变化。
2. 负相关在回归与相关分析中,因变量值随自变量值的增大(减小)而减小(增大)的现象。在这种情况下,表示相关程度的相关系数为负值。
3. 统计学中常用相关系数r来表示两变量之间的相关关系。r的值介于-1与1之间,r为正时是正相关,反映当x增加(减少)时,y随之相应增加(减少);呈正相关的两个变量之间的相关系数一定为正值,这个正值越大说明正相关的程度越高。当这个正值为1时就是完全正相关的情形,如点子排为一条直线,为完全正相关。正相关虽然意思明确,其实是个模糊的概念,不可以量化,只是定性说法。如果有明确的关系,例如y=2x,这叫y与x成正比,如果只是大体上,x、y的变化方向一样,例如x上升,y也上升或者x下降,y也下降,那么,这叫正相关。反之,x上升,y却下降,或者x下降,y却上升,就叫负相关了。