R是实数集,Q是有理数集,RQ表示有理数集在实数集中的余集,也就是实数集中去掉所有有理数后剩下的元素组成的集合,也就是无理数集。总而言之一句话,RQ表示无理数集。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
R是实数集,Q是有理数集,RQ表示有理数集在实数集中的余集,也就是实数集中去掉所有有理数后剩下的元素组成的集合,也就是无理数集。总而言之一句话,RQ表示无理数集。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。