tanx的积分是=∫(secx“方-1)dx=tanx-x+C。
直接利用积分公式求出不定积分,通过凑微分,最后依托于某个积分公式,进而求得原不定积分。元法经常用于消去被积函数中的根式。当被积函数是次数专很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。
tanx的积分是=∫(secx“方-1)dx=tanx-x+C。
直接利用积分公式求出不定积分,通过凑微分,最后依托于某个积分公式,进而求得原不定积分。元法经常用于消去被积函数中的根式。当被积函数是次数专很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。