首先要作出积分的区域,再看先对哪个做出积分,如果先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限,同理,如果是先对y积分,就作一条平行于y轴的,直线穿过积分上下限。
交换积分次序的时候,根据积分区域的不同,可能会涉及到把两个积分合成一个积分,也可能会把一个积分分成两个积分,所以具体依积分区域而定。
由已知的累次积分写出积分的区域D,然后再画出D的示意图,再由D的示意图画出写出D的另一类的表达式,从而就可以写出表达式。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等,平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。