椭圆的二重积分可以利用参数方程x?/a?+y?/b?=1求。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。
本质是求曲顶柱体体积。
重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。
平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
椭圆的二重积分可以利用参数方程x?/a?+y?/b?=1求。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。
本质是求曲顶柱体体积。
重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。
平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。